Ahrionld DATASHEET

METER SHUNTS

Below is the formula for calculating shunt values

To design a voltage multiplier,
 use:
$R x=\frac{V}{A}-R m$
Where...
$\mathbf{V}=\mathrm{FSD}$ voltage required

A = FSD current of meter
Rm = Meter resistance
$\mathbf{R x}=$ Required shunt
To design a current shunt, use:
$R s=R m x \frac{A m}{A_{t}-A_{m}}-R m$
Where...
Am = FS current of meter
At = FS current required
$\mathbf{R m}=$ Meter resistance
Rs = Required shunt

LM386 AUDIO POWER

 AMPLIFIER ICThe LM386 Audio Power Amplifier has a gain which may be set from 20 to 200,
 and can drive loads between 4 and 16 ohms. It's a very useful low voltage audio amplifier IC.

LM386 Gain	R1
20	∞
50	680
100	180
200	0

	Output Power (mW)		
	Load Resistor R2		
Vs	4Ω	8Ω	16Ω
5 V	190	160	90
6 V	250	250	150
9 V	380	560	400
12 V	380	660	780

LOGIC GATES

NOR Gate: Output is a logic " 1 " only if both inputs are " 0 ".
A logic "1" at either or both inputs produces a logic "0" output.

AND Gate: Output is a logic "1" only if both inputs are "1".
A logic "0" at either or both inputs produces a logic "0" output.

OR Gate: Output is a logic " 0 " only if both inputs are " 0 ".
A logic "1" at either or both inputs produces a logic "1" output.

NAND Gate: Output is a logic "0" only if both inputs are "1".
A logic "0" at either or both inputs produces a logic "1" output.

Inverter or NOT gate: Output is a logic "1" when input is "0". Output is a logic " 0 " when input is " 1 ". ie Inverts the input state.

D Flip-Flop: Transfers the input at D to the output at Q (and it's inverse to Q-bar), on the rising edge of the clock signal at C. No change in any outputs on the falling edge of the clock pulse.

LM1875 20W AUDIO

POWER AMPLIFIER IC

- Supply Voltage: \qquad $\pm 30 \mathrm{~V}$ max.
Supply Current: \qquad .100mA max.
THD at 20W @ 1kHz: \qquad 0.015%
Open Loop Gain: . .90 dB
Current Limit: \qquad . 4 A

INDUCTANCE

Also known as chokes, a device, usually a coil of wire which possesses inductance. The basic construction is wire, wound around a cylinder with or without a ferrous metal insert. Inductors have interesting and useful property changes which are dependent on frequency. Inductance is

- measured in Henries. The formulas for inductors in series

